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Abstract
Using static analysis techniques compilers for lazy functional
languages can be used to identify parts of a program that can be
legitimately evaluated in parallel and ensure that those expressions
are executed concurrently with the main thread of execution. These
techniques can produce improvements in the runtime performance
of a program, but are limited by the static analyses’ poor prediction
of runtime performance. This paper outlines the development of a
system that uses iterative profile-directed improvement in addition
to well-studied static analysis techniques. This allows us to achieve
higher performance gains than through static analysis alone.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms Languages, Algorithms, Design, Performance

Keywords Implicit Parallelism, Lazy Functional Languages, Auto-
matic Parallelism, Strictness Analysis, Projections, Iterative Compi-
lation, Feedback Directed Compilation

1. Introduction
I thought the “lazy functional languages are great for implicit
parallelism” thing died out some time ago [1]

Ben Lippmeier

Advocates of purely functional programming languages often
cite easy parallelism as a major benefit of abandoning mutable state
[2, 3]. This idea drove research into the theory and implementation
of compilers that take advantage of implicit parallelism in a func-
tional program. For lazy functional languages this can be seen to be
at odds with the goal of only evaluating expressions when they are
needed.

The ultimate goal of writing a program in a functional style,
and having the compiler find the implicit parallelism, still requires
work. We believe there are several reasons why previous work into
implicit parallelism has not achieved the results that researchers
have hoped for. Chief amongst those reasons is that the static
placement of parallel annotations is not sufficient for creating
well-performing parallel programs [4–7]. This paper explores one

gcd x y = if y == 0
then x
else if x > y

then gcd (x - y) y
else gcd x (y - x)

fromto x y = if x > y
then []
else x : fromto (x + 1) y

map f [] = []
map f (x:xs) = f x : map f xs

relPrime x y = gcd x y == 1

filter p [] = []
filter p (x:xs) = if p x

then x : filter p xs
else filter p xs

length [] = 0
length (x:xs) = 1 + (length xs)

sum [] = 0
sum (x:xs) = x + (sum xs)

euler n = let xs = fromto 1 n
in length (filter (relPrime n) xs)

main = print (sum (map euler (fromto 1 1000)))

Figure 1: Source listing for SumEuler

route to improvement: the compiler can use runtime profile data to
improve initial decisions about parallelism in much the same way a
programmer would manually tune a parallel program.

Additionally, when research into implicit parallelism was more
common, the work was often based on novel architectures or
distributed systems, not commodity hardware [4, 8]. Research was
unable to keep up with huge improvements in sequential hardware.
Today most common desktop workstations are parallel machines;
this steers our motivation away from the full utilisation of hardware.
Many programmers today write sequential programs and run them
on parallel machines. We argue that even modest speedups are
worthwhile if they occur ‘for free’.

Imagine that we have written the program in Figure 1. We might
study its structure and decide to introduce some par annotations.
When the program is compiled and executed, if we find that
performance is still not satisfactory, we might study a profile
(e.g. as provided by threadscope [9]), return to the source for the
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program and adjust the placement of parallel annotations. This
is the approach advocated by [9] and [10]. In contrast, many of
the previous attempts at automating parallelism only analyse the
program statically and do not adjust any parallel annotations after
runtime data is gathered. This would be equivalent to a programmer
never adjusting annotations after profiling the program.

By using runtime feedback, we can have the compiler be gener-
ous when introducing parallelism into the program. The profiling
data will then point to the places where parallel evaluation under-
performs and the compiler will disable the parallelism in these
places.

We have designed and implemented an experimental compiler
for implicit parallelism with profile-driven improvement. The source
language of the compiler is F-Lite [11], a non-strict functional core
language including ADTs, in addition to integer primitives, type
checking, parametric polymorphism, pattern-matching, and higher-
order functions.

1.1 Contributions
The contributions of our work are as follows:

• A fresh implementation of Hinze’s projection-based strictness
analysis [12] used to derive evaluation strategies
• A scheme for introducing parallelism into a program in conjunc-

tion with these strategies
• Simple rules for evaluating the effectiveness of parallelism
• A technique to disable par annotations
• Search strategies to improve initial par placements

This paper presents an overview of the design of our compiler
and some of the design decisions that were made. It also presents the
results of experiments using a range of small benchmark programs.

1.2 Roadmap
§2 presents a high-level overview of our approach to implicit paral-
lelism. §3 explains the advantages of performing defunctionalisation
on the source program. §4 motivates our use of a projection-based
strictness analysis. §5 describes the correspondence between projec-
tions and strategies which allows us to generate parallel strategies
based on the projections provided by the strictness analysis. §6
describes the initial placement of par annotations in the source
program. §7 introduces the technique used for utilising the runtime
profiling to disable some of the introduced parallelism along with
possible additional search techniques. §8 presents some experimen-
tal results and discussion of those results. Lastly, §9 contains our
conclusions and thoughts on possible future work.

2. Overview
In this section we present the overall picture of our technique. Much
of the discussion will center around the code presented in Figure
2. In order to understand the code, it is useful to understand the
architecture of the compiler.

2.1 Compiler Stages
The compiler is organised into 8 main phases, as follow:

1. Parsing

2. Defunctionalisation

3. Projection based Strictness Analysis

4. Generation of strategies

5. Placement of par annotations

6. G-Code Generation

7. Execution

8. Feedback and iteration

The parsing of the source language and sequential G-Code
generation are done in the standard way and will not be discussed
further. The rest of the paper will discuss the other phases.

2.2 A Program Before Iteration
The code listed in Figure 2 is the resulting core representation

of the program in Figure 1 after our analysis and transformations.
Specifically, the program has passed through compiler stages 1-5.

Before we dive into the program itself, note the following points:

• We only present the functions that have changed as a result of
transformation
• We have replaced auto-generated names with easier to read

names
• Functions ending in ‘SN ’ are derived strategies
• Functions with an underscore in the name are the result of

defunctionalisation

Taking a look at the program we can see several of the core ideas.

Defunctionalisation: The application of map to euler has been
replaced by a call to the specialised map_euler function. We no
longer have the functions map or filter instead we have specialised
versions of these functions (e.g. map_euler)

Introduction of parallelism: Two calls to par have been intro-
duced in the main function. Our work uses the traditional style for
the parallel combinator [13]

par :: a -> b -> b
par x y = y

The first argument is sparked off to be evaluated in parallel and
the function returns the second argument. This style is what allows
us to easily switch off a particular par which causes that switched
off par to act like flip const. This is explored further in §7.2.

Each application of par introduced by our compiler takes the
following form: par (s x) e where (s x) is the application of
derived strategy s to a variable x and e is an expression containing
x as a free variable. In a top-level definition like main, x will be a
name introduced by a let expression. For pars within the strategies
themselves, x will be a name introduced by case analysis.

Demand Analysis and Strategies: The compiler has introduced a
number of strategies into the program. These strategies are derived
based on the results of a demand analysis. A simple example from
the program is the transformed version of length. Because + (for
non-lazy integers) requires both arguments to be fully evaluated, it is
safe to evaluate the arguments to + in parallel to the execution of its
body. In order to benefit from the parallel evaluation, the structure
must be shared. The introduction of the name len accomplishes this.
Because the type of len is Int evaluating the expression to WHNF
is sufficient to evaluate the value fully.

Looking at the body of euler where length is called we see
a similar pattern. In this case the demand analysis determines that
it is safe the evaluate the spine of the list passed to length. The
expression is given the name ys and the strategy eulerListS1 is
derived based on this information. Notice that the elements of the
list passed to eulerListS1 are ignored in its body.

There are cases where there is a strict demand on an expression
but we do not introduce parallel evaluation of the expression. This
can be seen in the first argument to + in the body of length.
The rules for which subexpressions are considered definitely not
worthwhile are discussed in §6.
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main =
let eulerList =

let xs = fromto 1 1000
in par (fix mainListS1 xs) (map_euler xs)

in par (fix mainListS2 eulerList) (sum eulerList);

rwhnf x = seq x Unit;

mainListS1 f xs = case xs of
Cons y ys -> par (rwhnf y) (seq (f ys) Unit);
Nil -> Unit;

mainListS2 f xs = case xs of
Cons y ys -> par (rwhnf y) (seq (f ys) Unit);
Nil -> Unit;

sum xs = case xs of
Nil -> 0;
Cons y ys -> let rest = sum ys

in (par (rwhnf rest) ((y + rest)));

map_euler xs = case xs of
Nil -> Nil;
Cons y ys -> Cons (euler y) (map_euler ys);

euler x = let ys = filter_relPrime x (fromto 1 x)
in par (fix eulerListS1 ys) (length ys);

eulerListS1 f xs = case xs of
Cons y ys -> seq (f ys) Unit;
Nil -> Unit;

length xs = case xs of
Nil -> 0;
Cons y ys -> let len = length ys

in (par (rwhnf len) ((1 + len)));

filter_relPrime x y = case y of
Nil -> Nil;
Cons z zs ->

let b = relPrime x z
in (par (filter_relPrimeS1 b)

(if b
then Cons z (filter_relPrime x zs)
else filter_relPrime x zs));

filter_relPrimeS1 x = case x of
True -> Unit;
False -> Unit;

relPrime x y = let z = gcd x y
in (par (rwhnf z) ((z == 1)));

Figure 2: Core representation of SumEuler after defunctionalisa-
tion, demand analysis, and the introduction of initial par sites along
with their associated strategies.(Auto-generated names have been
replaced for better readability)

Iterative Improvement: Just because an expression is able to be
evaluated in parallel does not mean that doing so is beneficial!
This is one of the critical problems in implicit parallelism [4, 5, 9].
To combat this we run the program as presented in Figure 2 and
collect statistics about the amount of productive work each par
is responsible for. The pars that do not introduce a worthwhile

amount of parallelism (see discussion in §7) are disabled, freeing
the program from incurring the overhead of managing threads for
tasks with insufficient granularity 1.

Earlier we mentioned the pars in the bodies of length and
euler. We picked these examples because while they are safe,
they are not likely to be worthwhile. In the body of length the
parallel evaluation of len only evaluates what + will immediately
evaluate anyway. Giving us no benefit from parallelism. The parallel
evaluation of ys in the body of euler also suffers from a similar
issue.

So why introduce this parallelism? Because the granularity and
possible interference of parallel threads is difficult to know statically
at compile time. If we err on the side of generosity with our par
annotations we can then use runtime profiling to gather information
about the granularity and interference of threads.

As we would hope, our runtime system does determine that these
two pars (and some others) are not worthwhile and disables them,
improving performance.

Now that we have presented the high-level view of our work we
can explore each of the stages in depth and discuss our reasons for
certain design decisions.

3. Defunctionalisation
After parsing the next stage of the compiler applies a defunctionalis-
ing transformation to the input programs. Our defunctionalisation
method is limited in scope, but sufficient for our purposes. It spe-
cialises higher-order functions defining separate instances for differ-
ent functional arguments. We are careful to preserve sharing during
this transformation. Here we give our motivation for introducing
this transformation.

3.1 Why We Defunctionalise
Central to our design is the concept of par placement within a
program. Each par application can be identified by its position in
the AST. In a higher-order program basing our parallelism on the
location of a parwould very likely lead to undesirable consequences.
For example, a common pattern in parallel programs is to introduce
a parallel version of the map function

parMap :: (a -> b) -> [a] -> [b]
parMap f [] = []
parMap f (x:xs) = let y = f x

in y ‘par‘ y : parMap f xs

There is inevitably some overhead associated with evaluation of
a par application, and of sparking off a fresh parallel thread. So if
the computation f x is inexpensive, the parallelism may not provide
any benefit and could even be detrimental. As parMap may be used
throughout a program it is possible that there are both useful and
detrimental parallel applications for various functional arguments:
parMap f may provide useful parallelism while parMap g may
cost more in overhead than we gain from any parallelism. Unfor-
tunately when this occurs we are unable to switch off the par for
parMap g without losing the useful parallelism of parMap f. This
is because the par annotation is within the body of parMap. By spe-
cialising parMap we create two separate functions: parMap_f and
parMap_g, with distinct par annotations in each of the instances of
parMap.

1 This can be seen as a more extreme variation of Clack and Peyton Jones’
“Evaluate and die!” model of parallelism [14]: Evaluate a lot or die!
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f e1 . . . ei−1 (g e′1 . . . e
′
m) ei+1 . . . e#f 0 ≤ m < #g

=⇒ f〈i,g,m〉 e1 . . . ei−1 e
′
1 . . . e

′
m ei+1 . . . e#f

(1)

f x1 . . . xn = e

=⇒ f〈i,g,m〉 x1 . . . xi−1 y1 . . . ym xi+1 . . . xn

= e[xi/g y1 . . . ym]

(2)

Figure 3: Rules for Defunctionalisation. #f and #g represent the
arities of the functions. (1) refers to the transformation at the call
site, (2) describes the transformation of the definition, creating a
new version of f that has been specialised at its ith argument with
function g and m arguments to g.

parMap_f [] = []
parMap_f (x:xs) = let y = f x

in y ‘par‘ y : parMap_f xs

parMap_g [] = []
parMap_g (x:xs) = let y = g x

in y ‘par‘ y : parMap_g xs

After defunctionalisation we can determine the usefulness of
parallelism in each case independently. The plan is to deactivate
the par for the inexpensive computation, g x, without affecting the
parallel application of the worthwhile computation, f x.

3.2 How We Defunctionalise
Our defunctionaliser makes the following set of assumptions:

• Algebraic data structures are first-order (no functional compo-
nents)
• The patterns on the left-hand side of a declaration have been

compiled into case expressions
• Functions may have functional arguments but their definitions

must be arity-saturated and return data-value results
• No explicit lambdas in the program, but partial applications are

permitted

With these assumptions in mind, the rules for defunctionalisation
are presented in Figure 3. These rules are applied to the AST in a
bottom up fashion. This allows the transformation to assume that the
arguments to partially applied functions (like e′1 in (1)) have already
been defunctionalised.

Example: Take reverse defined as an instance of foldl:

reverse xs = foldl (flip Cons) Nil xs

this becomes

reverse xs = foldl_flip_Cons Nil xs

foldl_flip_Cons z xs
= case xs of

Nil -> z
Cons y ys ->

foldl_flip_Cons (flip_Cons z y) ys

flip_Cons xs x = Cons x xs

2

Another important benefit of applying defunctionalisation to
the program is that it allows the use of Hinze’s projection-based
strictness analysis [12], which we discuss next.

4. Demand Analysis
In lazy languages evaluation should only occur when necessary. This
apparently sensible rule can be at odds with the goals of performance
through parallelism: if we have parallel processing resources, we
wish to use them to do as much work as possible to shorten execution
time [6].

Call-by-need semantics forces the compiler to take care in
deciding which sub-expressions can safely be executed in parallel.
Having a simple parallelisation heuristic such as ‘compute all
arguments to functions in parallel’ can alter the semantics of a
non-strict language, introducing non-termination or runtime errors
that would not have occurred during a sequential execution.

The process of determining which arguments are required for a
function is known as strictness analysis [15]. Since the early 1980’s
such analysis has been widely used for reducing the overheads
of laziness [16]. In this section we provide a brief overview of
the two predominant techniques for strictness analysis: abstract
interpretation and projection-based analysis. We then motivate our
decision to use a projection-based analysis.

4.1 Abstract Interpretation
Mycroft introduced the use of abstract interpretation for performing
strictness analysis on call-by-need programs over thirty years ago
[15]. Strictness analysis as originally described by Mycroft was only
capable of dealing with a two-point domain (values that are definitely
needed, and values that may or may not be needed). This works well
for types that can be represented by a flat domain (Integer, Char,
Bool, etc.)2 but falls short on more complex data structures. For
example, even if we find that a function is strict in a list argument,
we can only evaluate up to the first cons safely. For many functions
on lists, evaluating the entire list, or the spine of the list, is safe;
canonical examples are sum and length.

In order to accommodate this type of reasoning, Wadler de-
veloped a four-point domain for the abstract interpretation of list-
processing programs [17]. However, when extended in the natural
way for general recursive data structures, the size of the domains
made finding fix-points prohibitively costly.

4.2 Projections
This explosion in cost motivated Wadler and Hughes to propose
using projections from domain theory to analyse strictness [18].

Projection-based analysis provides two benefits over abstract in-
terpretation: the ability to analyse functions over arbitrary structures,
and a correspondence with parallel strategies [13, 19]. This allows
us to use the projections provided by our analysis to produce an
appropriate function to compute the strict arguments in parallel.

Strictness analysis by abstract interpretation asks “When passing
⊥ as an argument is the result of the function call ⊥?”. Projection-
based strictness analysis instead asks “If there is a certain degree
of demand on the result of this function, what degree of demand is
there on its arguments?”.

What is meant by ‘demand’? As an example, the function
length requires that the input list be finite, but no more. We can
therefore say that length demands the spine of the argument list.
The function append is a more interesting example:

append :: [a] -> [a] -> [a]
append [] ys = ys
append (x:xs) ys = x : append xs ys

By studying the function we can tell that the first argument must
be defined to the first cons, but we cannot know whether the second
argument is ever needed.

2 Any type that can be represented as an enumerated type.
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However, what if the result of append needs to be a finite list?
For example:

lengthOfBoth :: [a] -> [a] -> Int
lengthOfBoth xs ys = length (append xs ys)

In this case both arguments to append must be finite. Projections
can be used to formalise this type of context [12, 18].

4.2.1 Semantics of Projections
Given a domain D, a projection on D is a continuous function
π : D → D that satisfies

π v ID (3)
π ◦ π = π (4)

Equation (3) ensures that a projection can not add any informa-
tion to a value, i.e. all projections approximate the identity function.
Idempotence (4) ensures that projecting the same demand twice on
a value has no additional effect. This aligns with our intuition of
demand. If we demand that a list is spine-strict, demanding spine-
strictness again does not change the demand on the list.

Because we want the introduction of parallelism to be semantics-
preserving we use the following safety condition for projections:

γ ◦ f = γ ◦ f ◦ π (5)

Given a function f : X → Y , and demand γ on the result of
f , projection-based analysis propagates the demand given by γ to
the arguments of f . This results in the demand on the arguments of
f given by π. The analysis aims to find the smallest π for each γ,
but approximating towards ID (as it is always safe to project the
identity).

Demands on Primitives: On unlifted base types, such as unboxed
integers, there are two demands, ID and BOT , with the following
semantics

ID x = x (6)
BOT x = ⊥ (7)

When an expression is in a BOT context it means that non-
termination is inevitable. You can safely evaluate an expression
in this context because there is no danger of introducing non-
termination that is not already present.

Demands on Lifted Types: Haskell’s non-strict semantics means
that most types we encounter are lifted types. Lifted types represent
possibly unevaluated values. Given a demand π on D, we can form
two possible demands on D⊥, π! and π?; strict lift and lazy lift
respectively. To paraphrase Kubiak et al.: π! means we will definitely
need the value demanded by this projection, and we will need π’s
worth of it [20]. π? does not tell us whether we need the value or not,
but if we do need the value, we will need it to satisfy π’s demand.

Demands on Products: A projection representing a demand on a
product can be formed by using the ⊗ operator with the following
semantics

〈π1 ⊗ · · · ⊗ πn〉 ⊥ = ⊥
〈π1 ⊗ · · · ⊗ πn〉 〈x1, . . . , xn〉 = 〈π1x1, . . . , πnxn〉

Demands on Sums: If projections are functions on a domain, then
⊕, the operator that forms projections on sum-types performs the
case-analysis.

d ::= BOT Bottom (hyperstrict)

| ID Top (the identity)

| 〈d1 ⊗ d2 · · · ⊗ dn〉 Products

| [d1 ⊕ d2 · · · ⊕ dn] Sums

| µβ.d Recursive Demands

| d? Strict Lift

| d! Lazy Lift

Figure 4: Abstract Syntax for Contexts of Demand

[IDTrue ⊕ IDFalse] True = True

[IDTrue ⊕BOTFalse] False = ⊥
Figure 4 presents a suitable abstract syntax for projections

representing demand. This form was introduced by Kubiak et al.
and used in Hinze’s work on projection-based analyses [12, 20]. We
have omitted the details on the representation of context variables
(for polymorphic demands), for a comprehensive discussion we
suggest Chapter 6 of Hinze’s dissertation [12].

In short, projections representing demand give us information
about how defined a value must be to satisfy a function’s demand on
that value. Knowing that a value is definitely needed, and to what
degree, allows us to evaluate the value before entering the function.

4.2.2 Example Projections
Because our primitives can be modelled by a flat domain (just ID
andBOT ), our lattice of projections corresponds with the two-point
domain used in abstract interpretation.

2

For pairs of primitive values, possible contexts include:

[〈ID?⊗ ID?〉] (8)
[〈ID!⊗ ID?〉] (9)

As Haskell’s types are sums of products, pairs are treated as
sums with only one constructor. For product types each member
of the product is lifted. Context 8 is the top of the lattice for pairs,
accepting all possible pairs. Context 9 requires that the first member
be defined but does not require the second element. This is the
demand that fst places on its argument.

2

For polymorphic lists there are 7 principal contexts; 3 commonly
occurring contexts are:

µβ.[ID ⊕ 〈γ?⊗ β?〉] (10)
µβ.[ID ⊕ 〈γ?⊗ β!〉] (11)
µβ.[ID ⊕ 〈γ!⊗ β!〉] (12)

Here µ binds the name for the ‘recursive call’ of the projection
and γ is used to represent an appropriate demand for the element
type of the list. An important point is that this representation for
recursive contexts restricts the representable contexts to uniform
projections: projections that define the same degree of evaluation on
each of their recursive components as they do on the structure as a
whole. The detailed reason for this restriction is given on page 89 of
Hinze [12]. This limitation does not hinder the analysis significantly
as many functions on recursive structures are themselves uniform.

With this in mind Context 10 represents a lazy demand on the
list, Context 11 represents a tail strict demand, and Context 12
represents a head and tail strict demand on the list. 2
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It will be useful to have abbreviation for a few of the contexts on
lists. These abbreviation are presented in Figure 5.

ID: accepts all lists

T (tail strict): accepts all finite lists

H (head strict): accepts lists where the head is defined

HT: accepts finite lists where every member is defined

Figure 5: Four contexts on lists as described in [18].

We can now say more about the strictness properties of append.
The strictness properties of a function are presented as a context
transformer [12].

append(ID) → ID!; ID?

append(T ) → T !;T !

append(H) → H!;H?

append(HT ) → HT !;HT !

This can be read as “If the demand on the result of append is
ID then the first argument is strict with the demand ID and the
second argument is lazy, but if it is needed, it is with demand ID. 2

Following Hinze [12] we construct projections for every user-
defined type. Each projection represents a specific strategy for
evaluating the structure, as we shall define in section 5. This provides
us with the ability to generate appropriate parallel strategies for
arbitrary types. Using a projection-based strictness analysis, we
avoid the exponential blowup of domains required for abstract
interpretation.

5. Deriving Strategies from Projections
One of the reasons that projections were chosen for our strictness
analysis is their correspondence to parallel strategies. Strategies are
functions whose sole purpose is to force the evaluation of specific
parts of their arguments [13, 19]. All strategies return the unit value
(). Strategies are not used for their computed result but for the
evaluation they force along the way.

5.1 Some Examples
The type for strategies is defined as type Strategy a = a -> ().

The simplest strategy, named r0 in the original paper [19],
which performs no reductions is defined as r0 x = (). The strat-
egy for weak head normal form is only slightly more involved:
rwhnf x = x ‘seq‘ ()

2

The real power comes when strategies are used on data-structures.
Take lists for example. Evaluating a list sequentially or in parallel
provides us with the following two strategies

seqList s [] = ()
seqList s (x:xs) = s x ‘seq‘ (seqList s xs)

parList s [] = ()
parList s (x:xs) = s x ‘par‘ (parList s xs)

Each strategy takes another strategy as an argument. The pro-
vided strategy is what determines how much of each element to
evaluate. If the provided strategy is r0 the end result would be that
only the spine of the list is evaluated. On the other end of the spec-
trum, providing a strategy that evaluates a value of the list-item type
a fully would result in list’s spine and elements being evaluated.

2

C :: [[Context]]→ Names→ Exp

C [[c?]]φ = λx→ ()

C [[c!]]φ = [[c]]φ

C [[µβ.c]]φ = fix (λn→ [[c]] (n : φ))

C [[β]] (n : φ) = n

C [[[cs]]]φ = λx→ Case x of A [[cs]]φ

C [[c]]φ = λx→ x ‘seq‘ ()

A :: [[(Constructor, Context)]]→ Names→ (Pat,Exp)

A [[(Cn, ID)]]φ = (Cn, ())

A [[(Cn, BOT )]]φ = (Cn, ())

A [[(Cn, 〈cs〉)]]φ = (Cn vs,F [[ss]]φ)

where ss = filter (isStrict ◦ fst) $ zip cs vs
vs = take (length cs)freshV ars

F :: [[[(Context, Exp)]]]→ Names→ Exp

F [[[]]]φ = ()

F [[((c, v) : [])]]φ = App (Fun “seq”) [App (C [[c]]φ) [v], ()]
F [[((c, v) : cs)]]φ = App (Fun “par”) [App (C [[c]]φ) [v], ls]

where ls = F [[cs]]φ

Figure 6: Rules to generate strategies from demand contexts

Already we can see a correspondence between these strategies
and the contexts shown in Figure 5. The T context (tail strict)
corresponds to the strategy that only evaluates the spine of the
list, while the HT context corresponds to the strategy that evaluates
the spine and all the elements of a list.

Recalling the program in Figure 2 the generated function
mainListS1 corresponds to a strategy for evaluating a list in a
HT context. In our derived strategies it is not necessary to pass ad-
ditional strategies as arguments because the demand on a structure’s
elements makes up part of the context that describes the demand on
that structure.

5.2 Derivation Rules
Because projections already represent functions on our value do-
main, translating a projection into a usable strategy only requires
that we express the projection’s denotation in a programmed defini-
tion. The rules we use are shown in Figure 6. Rule C constructs a
strategy for all of the context constructors except for products. This
is because product types are only found within constructors in the
source language and are therefore wrapped in sums as constructor-
tag context pairs. These pairs are handled by the A rule.

One aspect of strategies that does not directly correspond to a
context is the choice between seq and par. Every context can be
fully described by both sequential and parallel strategies. When a
constructor has two or more fields, it can be beneficial to evaluate
some of the fields in parallel. It is not clear, generally, which fields
should be evaluated in parallel and which should be evaluated in
sequence. As shown in ruleF we evaluate all fields in parallel except
for the last field in a structure. This means that if a structure has
only one field then its field will be evaluated using seq.
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5.3 Specialising on Demand
The key reason for performing a strictness analysis in our work is to
know when it is safe to perform work before it is needed. This work
can then be sparked off and performed in parallel to the main thread
of execution. Using the projection-based analysis allows us to know
not only which arguments are needed, but how much (structurally) of
each argument is needed. We convert the projections into strategies
and then spark off those strategies in parallel.

Assume that our analysis determines that function f is strict in
both of its arguments. This allows us to convert

f e1 e2

into

let a = e1
b = e2

in (s1 a) ‘par‘ (s2 b) ‘seq‘ (f a b)

where s1 and s2 are the strategies generated from the projections
on those expressions.

5.3.1 Different Demands on the Calling Function
If a function has different demands on its result at different calling
sites, that is dealt with ‘for free’ using the transformation above.
However, there may be multiple possible demands at the same call
site.

This can happen when there are different demands on the calling
function, for example:

func x = f e1 e2

Different demands on the result of func may mean different
demands on the result of f. This in turn means that different trans-
formations would be appropriate. Assume this results in having two
different demands on f. One demand results in the first transforma-
tion (funcD1) and the other results in the second (funcD2). How do
we reconcile this possible difference?

5.3.2 Specialisation by Demand
To accommodate this possibility we can clone the function func.
One clone for each demand allows us to have the ‘more parallel’
version when it is safe, and keep the ‘less parallel’ version in the
appropriate cases. Note, we do not have to clone all functions with
versions for every possible demand. Instead we can do the following
for each function:

1. Determine which demands are actually present in the program

2. In the body of the function, do the different demands result in
differing demands for a specific function call?

3. If no, no cloning

4. If yes, clone the function for each demand and re-write the
call-sites to call the appropriate clone

Applying the above procedure to our hypothetical expression
would result in the following

funcD1 x = let a = e1
b = e2

in s1 a ‘par‘ s2 b ‘seq‘ f a b

funcD2 x = let a = e1
in s1 a ‘par‘ f a e2

6. Introducing pars
After our strictness analysis and demand specialisation are com-
plete we are ready to introduce parallelism into our program. The
approach taken is to apply the generated strategies to the strict
arguments of a function.

Example: Take the famous fib

fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = fib (n - 2) + fib (n - 1)

The results of the strictness analysis show us that both arguments
to + have the same demand: ID!. We therefore evaluate the recursive
calls to fib in parallel:

fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib n = let a = fib (n - 2)

b = fib (n - 1)
in (s1 a) ‘par‘ (s2 b) ‘seq‘ a + b

There are two points to consider in the transformed program. One
is that by lifting subexpressions into let bindings we preclude the
possibility of certain compiler optimisations. The sharing of values
is essential for parallel strategies to be beneficial. In particular, thunk
elimination becomes more difficult.

The other point is that we utilise the common technique of
combining pars and seqs in order to prevent collisions between
threads. This is not always possible and as we will see in §9 can be
detrimental.

2

6.1 Granularity
It is possible to rely solely on the results of the strictness analysis
to determine which sub-expressions should be evaluated in parallel.
However, an expression being needed does not necessarily mean
that evaluating that expression will be worthwhile. This is known as
the granularity problem [4]. We use a simple oracle to determine
whether a subexpression should be evaluated in parallel. Recall that
our oracle should be generous in ‘allowing’ subexpressions to be
evaluated in parallel. Our iterative improvement reduces the amount
of parallelism introduced by static analysis. As the oracle’s only job
is to determine whether a subexpression is ‘worth’ the overhead of
parallel evaluation it has the type type Oracle = Exp -> Bool.
The two trivial oracles are

allYes :: Oracle
allYes = const True

allNo :: Oracle
allNo = const False

allNo clearly defeats the purpose of an auto-parallelising com-
piler, but allYes can serve as a stress-test for the iterative process.
The oracle used in our results returns True if the expression contains
a non-primitive function call, False otherwise.

mediumOracle e = or $ map f (universe e)
where

f (App (Fun n) as)
| n ‘elem‘ prims = False
| otherwise = True

f _ = False
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Here, universe takes an expression e and provides a list of all
the valid subexpressions of e, reaching the leaf nodes of the AST.

The transformation we apply is simple, for each function appli-
cation f e1 . . . en:

1. Gather all the strict argument expressions to a function

2. Pass each expression to the oracle

3. Give a name (via let-binding) to each of the oracle-approved
expressions

4. Before calling f spark the application of the derived strategy to
the appropriate binding

5. If there are multiple arguments that are oracle approved, ensure
that the last argument has its strategy applied with seq

We now have the necessary mechanisms in place for the intro-
duction of parallelism into a program.

7. Iterative Compilation
In this section we will look at the techniques we use to disable some
of the parallelism that has been introduced into our programs. This
involves recording a significant amount of runtime information and
a method for safely switching off the par annotations.

Our runtime system is designed in the tradition of projects like
GranSim [21]. The goal is to have as much control of the execution
substrate as possible. This allows us to investigate certain trade-offs
while ensuring that we minimise confounding variables.

7.1 Logging
The runtime system maintains records of the following global
statistics:

• Number of reduction cycles
• Number of sparks
• Number of blocked threads
• Number of active threads

These statistics are useful when measuring the overall perfor-
mance of a parallel program, but tell us very little about the useful-
ness of the threads themselves.

In order to ensure that the iterative feedback system is able
to determine the overall ‘health’ of a thread, it is important that
we collect some statistics pertaining to each individual thread. We
record the following metrics for each thread:

• Number of reduction cycles
• Number of sparks generated
• Number of threads blocked by this one
• Which threads have blocked the current thread

This allows us to reason about the productivity of the threads
themselves. An ideal thread will perform many reductions, block
very few other threads, and be blocked rarely. A ‘bad’ thread will
perform few reductions and be blocked for long periods of time.

7.2 Switchable pars
In order to take advantage of runtime profiles we must be able to
adapt the compilation based on any new information. One choice
is to recompile the program completely and create an oracle that
uses the profiles. This way the oracle can better decide which
subexpressions to parallelise. Our approach is to modify the runtime
system so that it is able to disable individual par annotations. When
a specific par in the source program is deactivated it no longer
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Figure 7: Statistics on the number of reductions carried out by the
threads a par site sparks off

creates any parallel tasks while still maintaining the semantics of
the program. The method has two basic steps:

• par’s are identified via the instruction PushGlobal "par" and
each par is given a unique identifier.
• When a thread creates the heap object representing the call to
par the runtime system looks up the status of the par using its
unique identifier. If the par is ‘on’ execution follows as normal.
If the par is ‘off’ the thread will ignore the G-Code instruction
Par.

7.3 Iteration
While we do record a variety of statistics, our current approach
focuses on reduction count as a guide to determine which par-
sites are beneficial to the program. The reasoning is simple3, our
motivation for parallelism is to do more work at once, so measuring
the amount of work undertaken by each thread might be a good
metric.

Because we record how productive each thread in a program
is and we keep track of which par site created each thread, we
can easily visualise how useful each par site is. Figure 7 gives an
overview of the health of each par-site. For each site we record
the total number of reductions carried out. The plot shows us the
statistics for this data with the median (line), inter-quartile range
(IQR, box), and±1.5∗IQR (whiskers). Statistical outliers are shown
as independent points. The parsites that only show a line as their
plot either have only one child thread (the case for par-site 1) or
have little variance in the distribution of reduction counts.

After every execution of the program, turn off the par site whose
threads have the lowest average reduction count. In the case of the
execution statistics displayed in Figure 7 we would disable par site
2, allowing us to avoid the overhead of all the unproductive threads
it sparked off. Then repeat this process until switching a par site off
increases the overall runtime of the program.

3 As we will see in §9, too simple.
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8. Experimental Results
In this section we present some preliminary results and point out
certain patterns that appear in our data.

First we introduce our benchmark programs and state the number
of par sites that were introduced statically:

SumEuler: SumEuler is a common parallel functional program-
ming benchmark first introduced with the work on the 〈ν,G〉-
Machine in 1989 [22]. The program computes the sum of map-
ping the euler-totient function of a list. As this functional idiom is
known to be highly parallelisable; this benchmark can be seen as a
‘sanity-check’ on our technique (9 par sites).

Queens + Queens2: We benchmark two versions of the nQueens
program. Both versions use a backtracking algorithm to search
for possible solutions. Queens2 is a purely symbolic version that
represents the board as a list of lists (10 par sites for Queens and
24 for Queens2).

SodaCount: Solves a word search problem for a given grid of
letters and a list of keywords (15 par sites).

Tak: Small recursive numeric computation that calculates a
Takeuchi number (2 par sites).

Taut: Determines whether a given predicate expression is a tautol-
ogy. Attempts all assignments of Boolean values to the variables in
the given expression (15 par sites).

MatMul: List of list matrix multiplication (7 par sites).

8.1 Overheads
Whether an expression is worthwhile to evaluate in parallel is
directly tied to cost of creating a parallel task. In order to account
for this we ran all of our experiments with the simulated overhead
cost at 3 settings. We chose the upper and lower bounds based on
benchmarking parallel functions using the Criterion library [23].

For each program we set our runtime system to simulate 4, 8, and
16 cores. First, let us examine Figure 1 which displays the results of
setting the cost of task creation to 10 reductions.

Table 1: Speedups relative to sequential computation when the
cost of sparking a task is set to 10 reductions. The number of runs
corresponds to the number of par sites that have been switched off.

Program 4-core 8-cores 16-cores
Runs Final Runs Final Runs Final

SumEuler 6 3.77 6 6.84 6 10.27
Queens 5 1.30 5 1.37 5 1.41
Queens2 22 3.91 22 7.74 22 15.07
SodaCount 3 2.42 3 4.72 3 8.95
Tak 1 3.39 1 6.79 1 13.58
Taut 4 1.00 0 1.00 9 1.00
MatMul 2 1.02 2 1.07 2 1.10

Already there are a few interesting results. SumEuler per-
forms as expected and manages to eliminate the majority of
the introduced par sites. Recalling Figure 2, the pars that sur-
vive the iterative improvement are the two in the main function
and the par in mainListS2. The second par in main and the
strategy mainListS2 are, taken together, equivalent to applying
parMap euler over the input list. When this program is paral-
lelised explicitly, that parMap is usually the only addition to the
program [22]. It is reassuring that our technique converges on the
same result.

The two implementations of nQueens vary drastically in their
improvement, with the more symbolic solution (Queens2) achieving

much better results. Search problems are known to be problematic
for techniques involving strictness analysis and usually benefit from
the introduction of speculative parallelism [4].

Taut was chosen as a benchmark program specifically because
the program (as written) did not have many opportunities for paral-
lelism. Had our technique managed to find any useful parallelism,
we would have been surprised.

MatMul is, to us, the most surprising of the results so far. Matrix
multiplication is famously parallelisable and yet our implementation
barely breaks even! Notice that of the 7 par sites in MatMul,
only 2 are being switched off. The par setting that the iterative
improvement converged on was not the optimal setting (we know
there is at least 2 superior settings). This convergence on local
maxima is something we will discuss in §9.

While the results in Figure 1 are revealing, it could be argued that
an overhead of 10 reductions to spark off a thread is unrealistically
low. Therefore we repeat the experiments with the more realistic
100 reduction overhead (Figure 2) and the pessimistic case of 1000
reduction overheads (Figure 3).

Table 2: Speedups relative to sequential computation when the cost
of sparking a task is set to 100 reductions. The number of runs
corresponds to the number of par sites that have been switched off.

Program 4-core 8-cores 16-cores
Runs Final Runs Final Runs Final

SumEuler 6 3.74 6 6.81 6 10.23
Queens 5 1.29 5 1.37 5 1.41
Queens2 22 3.83 22 7.57 22 14.76
SodaCount 3 2.17 3 4.23 3 8.02
Tak 1 2.36 1 4.71 1 9.42
Taut 9 1.00 0 1.00 9 1.00
MatMul 2 0.93 2 1.06 2 1.09

The results in Figure 2 mostly align with what we would expect
to happen if creating a parallel task incurred higher overheads: we
see reduced speedup factors and adding more cores is less likely to
benefit.

The key point to take away from this set of results is that while
lower speedups are achieved, the same par sites are eliminated in
the same number of iterations 4.

Now we try the same experiment again but with the less realistic
1000 reduction overhead to create a new thread.

Table 3: Speedups relative to sequential computation when the cost
of sparking a task is set to 1000 reductions. The number of runs
corresponds to the number of par sites that have been switched off.

Program 4-core 8-cores 16-cores
Runs Final Runs Final Runs Final

SumEuler 6 3.51 6 6.40 6 9.73
Queens 5 1.26 5 1.35 5 1.40
Queens2 22 3.14 22 6.22 22 12.18
SodaCount 12 1.85 3 2.08 1 1.39
Tak 1 0.57 1 1.15 1 2.32
Taut 12 1.00 12 1.00 7 1.00
MatMul 5 1.00 5 1.00 5 1.01

While the speedups are now much more moderate (when there
is a speedup at all) these results are interesting for a few reasons.

In particular, the number of cores now has a greater influence
on how many par sites are worthwhile. SodaCount, for instance,

4 Except for Taut, which in the 4-core case now takes 9 runs to determine
that there is no parallelism in the program.
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now eliminates 12 of its 15 par annotations in the case of 4-
core execution. This fits with our intuition that when there are
fewer processing units the threads require coarser granularity to
be worthwhile. In the cases of 8 and 16-core executions we observe
that fewer par sites are disabled, reinforcing this intuition.

MatMul also sees a jump in the number of disabled par sites.
Sadly, this results in even worse performance for MatMul, which
should be a highly parallelisable program.

8.2 Static vs. Iterative
While the results presented in Figures 1, 2, and 3 are promising for
preliminary results they are based on an admittedly simple search
heuristic. Part of our argument is that static analysis alone is not
sufficient for good gains from implicit parallelism. Figure 8 presents
a selection of results that show how the iterative improvement affects
the static placement of par annotations.

Even in the cases where the final speedup is lower than antici-
pated, such as Queens in Figure 8b, the program still benefits from
the iterative improvement. Queens2 sees the highest payoff from
iterative improvement. Many of the pars introduced by the static
analysis do not contribute significantly to the computation even
though it is semantically safe to introduce them. The iterative loop
converges on the few par sites that make a significant difference.

8.3 Comparison to GHC
While the results above are encouraging we would like to see how
the resulting programs perform when compiled by a modern high-
performance Haskell compiler. To do this we extract the final par
settings from each program and translate that to Haskell suitable for
compilation by GHC. For the versions parallelised by hand we use
the par placements found in the literature [10, 22].

Table 4: Speedups compared to the sequential program as compiled
by GHC for both manually and automatically parallelised versions

Program 4-core
Hand Auto

SumEuler 3.32 3.31
Queens 1.76 0.97
Queens2 2.29 0.61
SodaCount 1.25 0.64
Tak 1.77 1.64
MatMul 1.75 0.80

As Table 4 makes clear, the results are not impressive. In fact,
except for SumEuler and Tak, all of the parallel benchmarks
performed worse than their sequential counterparts.

While some of the results in Table 4 are disappointing, it is
important to remember that if the iterative compiler was hosted
in GHC itself, we would never see speedups below a factor of 1.
This is because in the worst case the compiler can switch off all
of the parallelism that was introduced into the program (or even
discard the modified program and use the original input program).
Additionally, hosting the iterative process on GHC itself would
provide realistic overhead costs, allowing the compiler to eliminate
pars more accurately.

However, we feel that not all hope is lost. There are a few
recurring issues in the generated program. A common issue is that
the generated strategies will not be what forces the evaluation of a
value. Take the following example as an illustration

foo n = let ys = gen n n
in par (tailStrict1 ys) (bar ys)

In the function foo we spark off a strategy that is meant to force
the spine of the list ys, the catch is that GHC’s par is fast enough

for bar ys to be what forces the evaluation of ys. So we’re paying
the overhead and reaping none of the benefits. In some programs
changing a par like the one found in foo to a seq is enough to
solve the issue and make the parallel version competitive with the
manually parallelised version.

9. Conclusions
We hope we have motivated the key design choices and ideas behind
our compiler: utilising defunctionalisation in §3, and the use of
projections over other strictness analysis methods in §4. Moreover,
that we have shown that there is a natural correspondence between
projections and strategies §5 that allows us to generate parallel
strategies from the results of our strictness analysis.

While projection-based strictness analysis does provide a useful
foundation for the introduction of parallelism, the results in §8 show
that static analysis alone does not provide the desired speedups.
Additionally, Table 4 shows that determining par-site health by
reduction count alone is too naive. Thread collisions that may not
happen on a simulated system are able to significantly hamper
parallel performance and should be taken into account. The results
suggest that better performance gains would be attained by hosting
the iterative framework on GHC itself.

9.1 Related Work
There is a wealth of prior work on parallelism, both implicit
and explicit, for functional languages. Here we provide a quick
discussion of the work that is most closely related to our own.

9.1.1 Work on Demand Analysis
Much of the early work on strictness analysis as a means to achieve
implicit parallelism focused on the abstract interpretation approach
because the work on projections had not been fully developed when
implicit parallelism was a more active research area. In particular,
the work on the “Automatic Parallelization of Lazy Functional
Programs” [5] only used two and four-point domains (as described
in [17]) in their strictness analysis. This limits the ability of the
compiler to determine the neededness of more complex structures.

More recent work on demand analysis for GHC is able to analyse
higher-order functions, but is restricted to single-constructor types
[24]. This is sufficient for the eliminating unnecessary allocations,
but does not provide enough information for the derivation of
parallel strategies.

Hinze’s work on projection-based strictness analysis came after
work on implicit parallelism fell out of favour [4, 12]. To our
knowledge we are the first to apply this work to the implicit
parallelism.

9.1.2 Blind Search
By representing a program’s par settings as a bit string we can
experiment with standard search techniques. Many algorithms
can optimise a function using only a fitness function that takes
a bitstring as an input. In our case, the compiler would set the par
switches according to the bitstring and use the wall-clock time as
a fitness function. We explored two such algorithms in an earlier
paper showing that even simple search algorithms, such as hill-
climbing, can achieve promising results [25]. The downside to
these techniques is that they require a large number of iterations
to converge. The technique presented here allows us to get similar
results in linear (in the length of the bitstring) time.

As we attempt to scale our technique to larger programs it is
likely that blind search technique will run into the combinatorial
explosion inherent in bitstring-based search techniques.
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Figure 8: The improvement to parallel speedup as pars are disabled

9.1.3 Implicit Parallelism
As the quote from the start of the paper alludes to, there are
few modern attempts at implicit parallelism for lazy functional
languages. One significant exception to this is the work undertaken
in 2007 by Harris and Singh [7]. The results were mostly positive
(in that most benchmarks saw an improvement in performance) but
were not to the degree desired. Since this research was published we
have seen no other attempt in this line of research within the lazy
functional programming community.

The approach presented here can be seen as the inverse of
the approach by Harris et al. [7] where the compiler starts with
no parallelism and the iterative feedback seeks to add parallel
evaluation. Their work attempted to use runtime profile data to
introduce parallel annotations into the program based on heap
allocations. In short, when viewing the parallel execution of a
program as a tree, their method seeks to expand the tree based
on previous executions of the program. Our goal is to develop a
system that begins with a program that has too much parallelism and
uses runtime data to prune the execution tree.

9.1.4 Semi-implicit Parallelism
Research into semi-implicit parallelism for lazy functional lan-
guages is still an active research area. The work on Repa frees
the programmer from worrying about parallelism in array compu-
tations by hiding the parallel details behind an API [26]. GPGPU
parallelism is also well studied and has resulted in the popular high-
performance Haskell library Accelerate [27].

9.2 Future Work
par Health: Other forms of penalties need to be introduced.
Blocking other threads, being blocked for extended periods of time,
creating too many parallel threads (or not enough) could all be
measures that incur a penalty. One simple but effective metric would
be to penalise par sites that spark strategies that are not the first to
evaluate their arguments. When another thread forces the evaluation
of a structure before the strategy that was meant to, we lose the
benefit of parallel strategies. These penalties would factor in to the
par site’s ‘health’ and determine which site should be disabled
before the next iteration.

Specialisation: One area that we expect to explore is the use
of other forms of specialisation. Defunctionalisation specialises
higher-order functions to first-order ones. Other possibilities include
specialising polymorphic functions into their monomorphic versions
and specialising functions based on their call-depth. Specialising
based on call-depth is a common technique in hand written programs.
Automating the process could lead to significant improvements in
recursive numeric programs (such as Tak).

Path Analysis: One goal of our work is to determine when it is
appropriate to use parallelism in a strategy. Currently, we spark con-
structor fields in a left-to-right order but we believe that performing
a path analysis would aid in this task [28]. Path analysis can also
help reduce the chances of thread collisions statically. By determin-
ing which expression will force a value first we can avoid one of the
central shortcomings of the approach outlined in this paper.
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