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Abstract
Property-based testing tools, like QuickCheck, are widely used for
testing Haskell programs. Since QuickCheck’s introduction in 2000,
several other similar tools and techniques have been developed.
There have been papers, book chapters, and countless blog posts on
how to use those tools. In this paper, we describe how to write one.
The purpose is to be educational: we don’t present new techniques
for generation of values or property-based testing. Instead, we
present a way to derive such techniques. We start with a very
simple implementation (25 LOC), then iteratively re�ne it into a
full featured property-based testing tool (<100 LOC).
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1 Introduction
Testing is by far the most common approach to ensure software
quality, but writing good tests can be di�cult. In Haskell, we
commonly use property-based testing to make this easier. Rather
than manually listing input–output pairs, property-based testing
instead allows the programmer to write properties which should
hold for all input values. A property-testing tool then takes care of
generating inputs, freeing the programmer from having to decide
which inputs are necessary to test.

There are several tutorial articles, such as [4] and [13], explaining
how to use these tools. Our aim in this paper is to give a tutorial
development showing how to write one. We start with a very simple
implementation in (§2), then iteratively re�ne it in (§3–7).

The target audience of this paper is:
• late undergraduate students and early graduate students;
• lecturers intending to explore property-based testing;
• researchers starting to work with property-based testing.
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Example 1.1. Consider the following (faulty) sort function:

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = filter (< x) xs

++ [x]

++ filter (> x) xs

Tests In a traditional approach to software testing, the program-
mer explicitly lists tests by providing expected input–ouput pairs
for functions. For example, the following are tests for sort:

sortTests :: [Bool]

sortTests = [ sort [] == []

, sort [1,2,3] == [1,2,3]

, sort [3,2,1] == [1,2,3]

]

This approach is usually known as unit testing [19].

Properties Tests can be parameterized over values. We call such
parameterized tests properties. The following are two properties of
a sort function:

prop_sortOrdered :: Ord a => [a] -> Bool

prop_sortOrdered xs = ordered (sort xs)

prop_sortCount :: Ord a => a -> [a] -> Bool

prop_sortCount x xs = count x (sort xs) == count x xs

The �rst property states that for all lists, sorting yields an ordered
list. The second states that the counts of elements do not change
after sorting. Together these two properties form a complete speci-
�cation of sort. As single samples of test results, we have:

prop_sortOrdered [1,2,3] == True

prop_sortCount 1 [1,2,3] == True

Property-based testing Property-based testing tools provide a
check function that takes a property, tests it by automatically gener-
ating test values, then reports the results. The following illustrates
typical usage:

> check (prop_sortOrdered :: [Int] -> Bool)

+++ OK

> check (prop_sortCount :: Int -> [Int] -> Bool)

*** Failure: 0 [0,0]

The sort function follows the �rst property but fails the second
due to a fault: it discards repeated elements. �



Haskell’17, September 2017, Oxford, UK Rudy Braquehais, Michael Walker, José Manuel Calderón Trilla, and Colin Runciman

The above example uses of check exemplify what makes property-
based testing compelling. When the system is able to �nd a coun-
terexample it not only reports that the property failed, it also reports
the inputs that caused the property to fail. It is not the user’s respon-
sibility to �nd the crucial test values; they are found automatically.
This is the heart of property-based testing. Because the speci�ed
properties should hold for all inputs we leave it to the testing tool
to generate candidate input values. The strategy that a testing tool
uses to generate input values is important and we revisit the design
of such a value-generator throughout this paper.

Roadmap In this paper we describe the implementation of a
property-based testing tool as a series of re�nements of a basic
�rst attempt. Section 2 presents the initial version. Sections 3–7
detail succssive re�nements. Section 8 brie�y compares the result
with LeanCheck. Section 9 provides an overview of related work.
Section 10 o�ers some closing thoughts.

2 Mark I: Generate and Test
Listable types As we implied in the introduction, a key ingredient
of every property-based testing library is a generator of test values.
In this paper, we choose to enumerate, or more precisely list, test
values. Because we need to be able to generate values of many
types, we take advantage of Haskell’s typeclass machinery. We say
that Listable types are those for which there is a declared list
of (ideally all) values of that type.

class Listable a where

list :: [a]

Booleans For types with �nitely many values, we can simply list
them directly. Here is a Listable instance for Bool:

instance Listable Bool where

list = [False,True]

Integers The set of integers extends in�nitely in both directions,
so we cannot simply enumerate them in order. When generating
test values we often �nd it useful to combine two separate lists.
For this reason we de�ne a function, \/, that lazily interleaves two
lists:

(\/) :: [a] -> [a] -> [a]

[] \/ ys = ys

(x:xs) \/ ys = x:(ys \/ xs)

Using \/, we combine the in�nite list of positive integers with the
in�nite list of negative integers, giving us the following Listable
instance for Int:

instance Listable Int where

list = [0,-1..] \/ [1..]

Evaluating list :: [Int] yields:

[0, 1, -1, 2, -2, 3, -3, 4, -4, 5, ...]

This pattern of combining multiple in�nite lists to create an enu-
meration is used extensively in this paper.

Pairs Before de�ning Listable pairs, we de�ne a function (><)
with the following type signature:
(><) :: [a] -> [b] -> [(a,b)]

It takes the product of two lists as a list of pairs. We might be
tempted to simply de�ne it as:
xs >< ys = [(x,y) | x <- xs, y <- ys] -- WRONG!

but that will not do! If ys is in�nite, we are stuck with enumerating
the head of xs paired with in�nitely many values of ys. Therefore,
we interleave lists starting with each x:
[] >< ys = []

xs >< [] = []

(x:xs) >< ys = [(x,y) | y <- ys] \/ (xs >< ys)

Using ><, we de�ne Listable pairs:
instance (Listable a, Listable b)

=> Listable (a,b) where

list = list >< list

This declaration is not recursive. Three di�erent instances of list
are involved!

list :: [(a,b)] = (list :: [a]) >< (list :: [b])

Lists Using lists of pairs, Listable lists can be de�ned as follows:
instance Listable a => Listable [a] where

list = [] : [x:xs | (x,xs) <- list]

We start with the empty list. Then, we list all lists of the form x:xs.
Since we can list pairs, that is done by simply listing pairs of type
(a,[a]) then applying the list constructor (:). This declaration is
recursive.

Searching for counter-examples Once we can list values of a
type, we can check a property using a �nite subset of them. We
de�ne a counterExamples function that lists any counter-examples
of a property found by applying it to a limited number of test values:
counterExamples :: Listable a

=> Int -> (a -> Bool) -> [a]

counterExamples n p =

[x | x <- take n list, not (p x)]

Showing test results Using the counterExamples function, we
de�ne the checkFor function. For a given maximum number of
test values, it reports whether a property is true:
checkFor :: (Show a, Listable a)

=> Int -> (a -> Bool) -> IO ()

checkFor n p =

case counterExamples n p of

[] -> putStrLn $ "+++␣OK!"

(x:_) -> putStrLn $ "***␣failed␣for:␣" ++ show x

For convenience, we also provide a check function that �xes the
maximum number of test values:
check :: (Show a, Listable a) => (a -> Bool) -> IO ()

check = checkFor 200

Example 1.1 (revisited). We can now test the properties from
the introduction:
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> check (prop_sortOrdered :: [Int] -> Bool)

+++ OK

> check (uncurry prop_sortCount :: (Int,[Int]) -> Bool)

*** failed for: (0,[0,0])

The second property has to be uncurried. In §4 we will describe
what is needed for it to appear naturally as a curried function. �

3 Mark II: Algebraic Datatypes
Though lists and tuples are often used in functional programs, so
are algebraic data-types (ADTs). For example, take “Hutton’s Razor”
[9]:
data Expr = Val Int

| Add Expr Expr

deriving (Show, Eq)

For our tool to be applicable to a wider range of programs, we
must be able to work with ADTs such as Expr. In the rest of this
section we present additions to Mark I that gain us the ability to
do so.

Shape shi�ing The key insight is that we already have the nec-
essary tools for generating values of datatypes such as Expr but
they are just the wrong shape.

Take Vals for instance, we already know how to list Ints, we
just need to wrap them in Val constructors. To this end we de�ne
cons1, for constructors with 1 argument:
cons1 :: Listable a => (a -> b) -> [b]

cons1 c = [c x | x <- list]

This idea generalises nicely to constructors with more than one
argument, which are really just tuples with a di�erent outermost
constructor:
cons2 :: (Listable a, Listable b)

=> (a -> b -> c) -> [c]

cons2 c = [c x y | (x,y) <- list]

The combinators cons3, cons4, . . . , cons<N> can be created simi-
larly.

Nullary constructors are also useful, and so we provide cons0
that simply wraps the value in a list:
cons0 :: a -> [a]

cons0 c = [c]

With these functions de�ned, it is a simple matter to de�ne an
instance of Listable for Expr:
instance Listable Expr where

list = cons1 Val

\/ cons2 Add

Some readers may have realised that cons1 and its siblings are
not strictly necessary. Without the cons1 and cons2 functions our
Listable instance for Expr could be de�ned as follows:
instance Listable Expr where

list = [Val c | c <- list]

\/ [Expr x y | (x,y) <- list]

However, as our ADTs grow in size (in number of constructors
or number of �elds) this method becomes tedious and error-prone,
which is what motivated the consN abstractions.

In fact, we can rede�ne the instances for Bool and [a] using our
new, more general, tools:
instance Listable Bool where

list = cons0 False

\/ cons0 True

instance Listable a => Listable [a] where

list = cons0 []

\/ cons2 (:)

Testing properties of Exprs We can now test properties of Exprs.
The constructor Add is not commutative, as the automatically de-
rived (==) for Exprs is structural:
> check $ \(e1,e2) -> Add e1 e2 == Add e2 e1

*** failed for: (Add (Val 0) (Val 0),Val 0)

But, with eval de�ned as
eval :: Expr

eval (Val i) = i

eval (Add e1 e2) = eval e1 + eval e2

the constructor Add is commutative under eval:
> check $ \(e1,e2) -> eval (Add e1 e2)

> == eval (Add e2 e1)

+++ OK!

4 Mark III: Multi-argument Properties
Mark I and II have a problem: check and related functions can only
test properties with one argument. Multiple arguments have to be
encoded in tuples. It might seem that writing rather than
check $ \(x,y,z) -> x + (y + z) == (x + y) + z

check $ \x y z -> x + (y + z) == (x + y) + z

would be

Testable types Ideally, we would like to test properties with
types:

a -> Bool

a -> b -> Bool

a -> b -> c -> Bool

...

Where all of the argument types are Listable.
In other words, we would like to overload our check function so

that its property argument can have any arity. For that, we de�ne
the typeclass of Testable properties:
class Testable a where

results :: a -> [Result]

Its only function, results, takes a Testable property, and returns
a list of Results. Where the type Result is the following type
synonym:
type Result = ([String],Bool)

The �rst element of the pair is a list of Strings, with each element
of the list representing an argument to the property. The second
element of the pair is the boolean result of testing the property for
these arguments.
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Testable booleans We can now de�ne our �rst Testable instance:
Bool. A boolean value is a property with no arguments where the
only result is its value.

instance Testable Bool where

results p = [([],p)]

On its own being able to test properties of type Bool is not very
useful. However, all of the properties we are concerned with will
return a boolean value. The instance above is the base case in a
type-level recursion.

Testable functions The recursive, and �nal, case is our instance for
functions:

instance (Show a, Listable a, Testable b)

=> Testable (a -> b) where

results p =

foldr (\/) [] [resultsFor x | x <- list]

where

resultsFor x =

[(show x:as,r) | (as,r) <- results (p x)]

For testable properties of type a -> b the argument type, a, must
have Show and Listable instances so that we can represent the ar-
guments as strings and generate test argument values, respectively.
The result type, b, must be Testable: note the partial application
p x giving a specialised version of property p with x �xed as the
test value for the �rst argument. As (->) associates to the right,
a -> (c -> Bool) is the same as a -> c -> Bool, and we can
instantiate b at a function type as long as the �nal result type is
Bool.

Finding counter-examples of Testable values We can now
generalise the counterExamples function to take any Testable
argument, not just a unary predicate:

counterExamples :: Testable a

=> Int -> a -> [[String]]

counterExamples m p =

[as | (as,False) <- take m (results p)]

The functions checkFor and check change correspondingly:

checkFor :: Testable a => Int -> a -> IO ()

checkFor n p =

case counterExamples n p of

[] -> putStrLn $ "+++␣OK!"

(ce:_) -> putStrLn $ "***␣failed␣for:␣"

++ unwords ce

check :: Testable a => a -> IO ()

check = checkFor 200

In checkFor, we apply unwords to the counter-example, as it is a
list of strings.

Now check can be used with properties of any arity:

> check $ \x y z -> (x + y) + z == x + (y + z :: Int)

+++ OK

Example 1.1 (revisited). The prop_sortCount property from §1
can now be tested in its natural curried form:

> check (prop_sortCount :: Int -> [Int] -> Bool)

*** failed for: 0 [0,0] �

5 Mark IV: Fair Enumeration
Mark I, Mark II and Mark III all share two related drawbacks: we
do not always get the simplest counter-example (see Example 5.1)
and we have to con�gure a unreasonable number of tests to �nd
some simple counter-examples (see Example 5.2)

Example 5.1. Consider the following two functions for rotating
Exprs with the intended property that one reverses the e�ect of
the other:

rotateL :: Expr -> Expr

rotateL (Add e1 (Add e2 e3)) = Add (Add e1 e2) e3

rotateR :: Expr -> Expr

rotateR (Add (Add e1 e2) e3) = Add e1 (Add e3 e2)

prop_rotRotId :: Expr -> Expr -> Expr -> Bool

prop_rotRotId e1 e2 e3 = rotateR (rotateL e) == e

where e = Add e1 (Add e2 e3)

Passing prop_rotRotId to check, we get the following:

> check prop_rotRotId

*** failed for: (Val 0) (Add (Val 0) (Val 0)) (Val 0)

The function rotateR is faulty. The expressions e2 and e3 are
swapped in the function result. However, this is not the simplest
counter-example to illustrate the fault. Ideally, we would like to
get something like:

*** failed for: (Val 0) (Val 0) (Val 1)

as it is smaller, both in string length and in the number of construc-
tors. This arguably makes debugging easier. �

Example 5.2. Consider this faulty implementation of a merge
function

merge :: Ord a => [a] -> [a] -> [a]

merge [] ys = ys

merge xs [] = take 2 xs

merge (x:xs) (y:ys) | x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

that does not adhere to the following expected property:

prop_elemMerge :: Int -> [Int] -> [Int] -> Bool

prop_elemMerge x xs ys =

(elem x xs || elem x ys) == elem x (merge xs ys)

Yet using Mark III (§4) and the default number of tests (200), we get
no counter-example:

> check prop_elemMerge

+++ OK!

If we increase the number of tests to 10000, we �nd a counter-
example:

> checkFor 10000 prop_elemMerge

*** failed for: 1 [0,0,1] []

The counter-example is not complex, yet it only appears as the
8190th test in our enumeration. �
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Cause of these issues What causes the issues in Examples 5.1
and 5.2? The problem can be illustrated with pairs of Ints:

> list :: [(Int, Int)]

[(0,0),(1,0),(0,1),(-1,0),(0,-1),(1,1),(2,0),...]

The �rst few values above are as we might expect. However, if we
look a little further:

> drop 100 $ list :: [(Int, Int)]

[(0,-25),(1,13),(0,26),(2,-3),(0,-26),(1,-13)...]

the enumeration varies the second element of our tuples more
rapidly than the �rst. For instance:

> import Data.List (findIndex)

> let list' = list :: [(Int, Int)]

> findIndex (== (0,9)) list'

Just 34

> findIndex (== (9,0)) list'

Just 131071

Intuitively, (0,9) and (9,0) are equally simple. We would prefer
them to appear close to each other in our enumeration.

Even more surprising, but for the same reason, in the current
enumeration, (2,2) appears later than (0,9) being the 55th and
34th enumerated values, respectively. As (2,2) is intuitively sim-
pler than (0,9), we would prefer it to appear �rst.

5.1 Tiered enumeration
To solve the problem of unfair enumeration, we reify the intuition
of “simplicity”. We create tiers of values and rede�ne the Listable
class in terms of these tiers.

class Listable a where

tiers :: [[a]]

A Listable instance’s tiers value is a possibly in�nite list of �nite
sublists of values characterised by some notion of size. Each sublist
represents a tier: the �rst tier contains values of size 0, the second
tier contains values of size 1, and so on. Now, to list all values of a
type, we concatenate tiers:

list :: Listable a => [a]

list = concat tiers

Goal Before going into the details of how to de�ne tiers for arbi-
trary types, we can gain a greater intuition for tiers by studying
simple examples:

Booleans Both False and True have size 0:

tiers :: [[Bool]] = [[False,True]]

Words We de�ne the following for tiers of Word:

tiers :: [[Word]] = [[0],[1],[2],[3],[4],[5],...]

There is only one natural of each size: 0 has size 0, 1 has size 1, 2
has size 2, 3 has size 3, and so on.

Pairs The size of pairs is given by the sum of sizes of its elements.
For pairs of words, we then have:

tiers :: [[(Word,Word)]] =

[ [(0,0)]

, [(0,1),(1,0)]

, [(0,2),(1,1),(2,0)]

, [(0,3),(1,2),(2,1),(3,0)]

, ...

]

Revisiting the examples of Int pairs:

> findIndex (== (2,2)) list'

Just 24

> findIndex (== (0,9)) list'

Just 153

> findIndex (== (9,0)) list'

Just 170

(0,9) and (9,0) now appear closer in the enumeration, and (2,2)
appears before both.

5.2 Manipulating tiers
(\/) for tier-lists The sum of two tier-lists is de�ned by:

(\/) :: [[a]] -> [[a]] -> [[a]]

xss \/ [] = xss

[] \/ yss = yss

(xs:xss) \/ (ys:yss) = (xs ++ ys) : xss \/ yss

For tier-lists with the same number of tiers, \/ is equivalent to
zipWith (++) .

The old version of \/ is still useful, so we rename it interleave:

interleave :: [a] -> [a] -> [a]

[] `interleave` ys = ys

(x:xs) `interleave` ys = x:(ys `interleave` xs)

(><) for tier-lists The product of two tier-lists is de�ned by:

(><) :: [[a]] -> [[b]] -> [[(a,b)]]

_ >< [] = []

[] >< _ = []

(xs:xss) >< yss = map (xs **) yss

\/ delay (xss >< yss)

where xs ** ys = [(x,y) | x <- xs, y <- ys]

Note the use of delay. As we peel-o� one tier in the pattern match
to extract xss, we need to delay the enumeration of the second
argument of \/.

The function delay is de�ned by:

delay :: [[a]] -> [[a]]

delay = ([]:)

It increases the size assigned to elements in a tier enumeration
by prepending an empty list. So:

delay [[x,y],[a,b]] = [[],[x,y],[a,b]]

Constructing tiers Now, we rede�ne the cons<N> family of func-
tions to return tier-lists.
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Arity 0 The function cons0 simply wraps the value in a tier-list
with a single value of size 0:
cons0 :: a -> [[a]]

cons0 x = [[x]]

Arity 1 The function cons1 maps a given constructor into a tiered
enumeration, delaying it once.
cons1 :: Listable a => (a -> b) -> [[b]]

cons1 f = delay (mapT f tiers)

The function mapT, a variant of map for tier-lists, is de�ned as
follows.
mapT :: (a -> b) -> [[a]] -> [[b]]

mapT = map . map

Further arities For cons2 and others, it is just a matter of uncur-
rying, mapping and delaying:
cons2 :: (Listable a, Listable b)

=> (a -> b -> c) -> [[c]]

cons2 f = delay (mapT (uncurry f) tiers)

cons3 :: (Listable a, Listable b, Listable c)

=> (a -> b -> c -> d) -> [[d]]

cons3 f = delay (mapT (uncurry3 f) tiers)

where

uncurry3 f (x,y,z) = f x y z

Note cons<2>, . . . , cons<N> need matching Listable tuple in-
stances, de�ned in the next section.

5.3 Listable instances using tiers

Listable algebraic data types (revisited) Apart from the renam-
ing list to tiers, all instances de�ned in §3 that use the sum-of-
cons<N> pattern are unchanged. For example:
instance (Listable a) => Listable [a] where

tiers = cons0 []

\/ cons2 (:)

Listable tuples (revisited) We de�ne tiers of pairs using a prod-
uct of tiers of element values:
instance (Listable a, Listable b)

=> Listable (a,b) where

tiers = tiers >< tiers

tiers of triples are de�ned by:
instance (Listable a, Listable b, Listable c)

=> Listable (a,b,c) where

tiers = mapT (\(x,(y,z)) -> (x,y,z)) tiers

Listable integers (revisited) We could de�ne Listable Int as:
instance Listable Int where

tiers = [[0]] ++ [ [n,-n] | n <- [1..] ]

In this de�nition, the size of an integer is its absolute value.
However, from a practial point of view, as we use Ints inside
other structures, this would make the enumeration “blow-up” faster
(Table 1). Having one Int per tier works better in practice, even
though the notion of size becomes less intuitive here: 0 has size

Table 1. Numbers of values in each tier for two alternative
Listable Int instances. When using the absolute value as size
(1), the enumeration of compound types containing Ints “blows-up”
faster than with one-integer-per-tier (2).

(Enum.) – Type Numbers of values for tier of size
0 1 2 3 4 5 6 7 8

(1) – Int 1 2 2 2 2 2 2 2 2
(2) – Int 1 1 1 1 1 1 1 1 1
(1) – (Int,Int) 1 4 8 12 16 20 24 28 32
(2) – (Int,Int) 1 2 3 4 5 6 7 8 9
(1) – [Int] 1 1 3 7 17 41 99 239 577
(2) – [Int] 1 1 2 4 8 16 32 64 128
(1) – Expr 0 1 2 3 6 12 26 59 138
(2) – Expr 0 1 1 2 3 6 11 23 47

0, 1 has size 1, -1 has size 2, 2 has size 3, and so on, alternating
between positives and negatives.

instance Listable Int where

tiers = map (:[]) $ [0,-1..] `interleave` [1..]

> tiers :: [[Int]]

[[0],[1],[-1],[2],[-2],[3],...]

Convenience In our new Listable typeclass de�nition, the value
tiers can exist alongside list with default de�nitions of each in
terms of the other:

class Listable a where

tiers :: [[a]]

list :: [a]

tiers = map (:[]) list

list = concat tiers

So the user can de�ne any Listable instance in the manner most
convenient for their use-case. For types where a notion of tiers
is not useful, de�ning only list provides the same enumeration
as the earlier versions of our tool. We can rede�ne a Listable
instance for Int as follows:

instance Listable Int where

list = [0,-1..] `interleave` [1..]

5.4 Testable typeclass: tiers of tests
Recall our result type that represents a test result by a list of argu-
ments and a boolean test result for those arguments:

type Result = ([String],Bool)

We rede�ne our Testable typeclass with one function, resultiers.
Given a Testable property, it returns tiers of results.

class Testable a where

resultiers :: a -> [[Result]]

The simpler results list can be obtained by concatenating resultiers:

results :: Testable a => a -> [Result]

results = concat . resultiers
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We can now rede�ne our �rst Testable instance — the type-
level base case Bool. Again, a boolean value is a property with no
arguments, where the only test result is its value.

instance Testable Bool where

resultiers p = [[([],p)]]

The type-level recursive case, as before, is a functional type with
a Testable result:

instance (Show a, Listable a, Testable b)

=> Testable (a -> b) where

resultiers p = concatMapT resultiersFor tiers

where

resultiersFor x =

(\(as,x) -> (show x:as,r))

`mapT`

resultiers (p x)

The type-level recursion is the same as in §4. The di�erence is
that we operate on tier-lists instead of value-lists. The concatMapT
function is the tiered equivalent of concatMap:

concatT :: [[ [[a]] ]] -> [[a]]

concatT = foldr (\+:/) [] . map (foldr (\/) [])

where xss \+:/ yss = xss \/ delay yss

concatMapT :: (a -> [[b]]) -> [[a]] -> [[b]]

concatMapT f = concatT . mapT f

5.5 Finding counter-examples and reporting test results
The functions counterExamples and check from §4 do not need
to be rede�ned. It is enough that we have rede�ned results.

Let us now revisit the examples from the start of this section.
Example 5.1 (revisited). When running check prop_rotRotId
we now get one of the simplest counter-examples:

*** failed for: (Val 0) (Val 0) (Val 1)

Example 5.2 (revisited). Running check prop_elemMerge (with
the default number of tests of 200), we get:

*** failed for: 0 [1,1,0] []

Before, we had to con�gure 10000 tests to get a counter-example.

6 Mark V: Conditional Properties and Data
Invariants

Often we do not expect a property to hold in all cases, but only those
which meet some precondition. For example, for non-negative
values of x:

\x -> x == abs x

We can express such constraints either by embedding a precon-
dition into a property itself or by applying an invariant condition
in a generator.

Conditional properties We can de�ne the logical implication
operator as a normal Haskell function and use it to reformulate the
abs property:

(==>) :: Bool -> Bool -> Bool

False ==> _ = True

True ==> p = p

infixr 0 ==>

\x -> x >= 0 ==> x == abs x

This approach has the advantage of not needing any changes in
the property testing tool, but has the signi�cant downside that there
is no reduction in the number of cases checked. As our Listable
instance for Int alternates positive and negative values, only half
of those values make it past the precondition. The property-testing
tool does not care how the property passes or fails, only what the
result is. A property passing because the precondition failed is
considered just as interesting a test as a property passing because
the actual condition of interest held.

Data invariants Often we do not want to check a property for
every possible value, but just pushing the precondition into the
property leaves much to be desired. We can address this problem
by instead restricting the generated values: the same number of
test cases will be tried, but now they will all meet the precondition.

We can rede�ne the standard function filter to work over tiers:
filterT :: (a -> Bool) -> [[a]] -> [[a]]

filterT = map . filter

and a convenient �ipped version
suchThat :: [[a]] -> (a -> Bool) -> [[a]]

suchThat = flip filterT

that can be used when de�ning Listable instances of types that
follow a data invariant, for example:
newtype NonNeg n = NonNeg n

instance (Listable n, Num n, Ord n)

=> Listable (NonNeg n) where

tiers = cons1 NonNeg `suchThat` nonNegOk

where

nonNegOk (NonNeg n) = n >= 0

So,
> tiers :: [[NonNeg Int]]

[ [], [NonNeg 0], [NonNeg 1], [], [NonNeg 2], ... ]

The function suchThat generalizes nicely over types with sev-
eral constructors, allowing di�erent invariants for each (or none):

tiers = cons<N> <Cons1> `suchThat` <someCondition>

\/ cons<N> <Cons2>

\/ cons<N> <Cons3> `suchThat` <someCondition>

\/ cons<N> <Cons4>

We can use the NonNeg type in the de�nition of the abs property
to ensure that only non-negative values are checked:
\(NonNeg x) -> x == abs x

7 Mark VI: Functions as Test Values
Functional programs often use higher-order functions like map
and filter. As they take functional arguments, properties about
them require functional arguments. In this section we explore one
approach of testing properties with functions as test values.
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Example 7.1. The following is an (incorrect) property from [2]
stating that map and filter commute:
prop_mapFilter ::

Eq a => (a -> a) -> (a -> Bool) -> [a] -> Bool

prop_mapFilter f p xs =

map f (filter p xs) == filter p (map f xs) �

To test it, we need to de�ne a Listable instance for functions (a ->
b). However, a complete enumeration of functions over recursive
types is known to be impossible. Even for primitive recursive
functions, an enumeration is not feasible in practice [10].

Mutating functions We can enumerate a useful though limited
class of functions by starting with constant-valued functions, then
adding exceptions. Each single-case mutation of a function is de-
�ned by an exception pair. The mutate function mutates a function
given a list of exception pairs:
mutate :: Eq a => (a -> b) -> [(a,b)] -> (a -> b)

mutate f ms = foldr mut f ms

where

mut (x',fx') f x = if x == x' then fx' else f x

We used mutate in our previous work on the FitSpec tool [1], but
there mutation is applied to given functions under test, not to
constant-valued ones.

Enumerating exceptions The exceptionPairs function takes
tiers of argument and result values, and gives tiers of lists of ordered
pairs of argument and result values.
exceptionPairs :: [[a]] -> [[b]] -> [[ [(a,b)] ]]

For example:
> exceptionPairs (tiers :: [[Word]]) (tiers :: [[Word]])

[ [[]]

, [[(0,0)]]

, [[(0,1)],[(1,0)]]

, [[(0,2)],[(1,1)],[(0,0),(1,0)],[(2,0)]]

, ... ]

Here is how we de�ne exceptionPairs:
exceptionPairs xss yss =

concatMapT (`excep` yss) (properSubsetsOf xss)

where

excep :: [a] -> [[b]] -> [[ [(a,b)] ]]

excep xs sbs = zip xs

`mapT` products (const sbs `map` xs)

Note the application of the function properSubsetsOf. It returns
tiers of proper sublists of values from a given tier-list. In this way,
we avoid most but not all repetition.

Enumerating functions Now, using mutate and exceptionPairs,
we are ready to enumerate tiers of functions. The combining opera-
tor (-->>) takes tiers of argument values and tiers of result values
and gives tiers of functions.
(-->>) :: Eq a => [[a]] -> [[b]] -> [[a -> b]]

xss -->> yss =

concatMapT

(\(r,yss) -> mapT (const r `mutate`)

(exceptionPairs xss yss))

(choices yss)

The function choices :: [[a]] -> [[(a,[[a]])]] returns
tiers of choices for result values. Each choice is a pair of an
element taken from the argument tiers and a copy of the argument
tiers without that element. Its de�nition is omitted here.

So, our Listable (a -> b) instance is just:
instance (Eq a, Listable a, Listable b)

=> Listable (a -> b) where

tiers = tiers -->> tiers

As with the Testable (a -> b) instance in §4, the above de�nition
su�ces for function types of any arity: Listable (a->b->c),
Listable (a->b->c->d) and so on. Arguments should be in-
stances of both Eq and Listable. Results should be instances of
Listable.

Example 7.2. These are the enumerated functions of type Bool
-> Bool:
tiers :: [Bool -> Bool] =

[ [ const False

, const True ]

, [ const False `mutate` [(False,True)]

, const False `mutate` [(True,True)]

, const True `mutate` [(False,False)]

, const True `mutate` [(True,False)] ] ]

This enumeration includes two repeated functions:
const True `mutate` [(False,False)]

const True `mutate` [(True,False)]

which are equivalent to, respectively:
const False `mutate` [(True,True)]

const False `mutate` [(False,True)]

That is more apparent if we show each function extensionally:
tiers :: [Bool -> Bool] =

[ [ \x -> case x of False -> False; True -> False

, \x -> case x of False -> True; True -> True ]

, [ \x -> case x of False -> True; True -> False

, \x -> case x of False -> False; True -> True

, \x -> case x of False -> False; True -> True

, \x -> case x of False -> True; True -> False ]

]

and indeed, we can de�ne a Show instance for functional types
that shows functions in a similar extensional form by enumerating
arguments and recording results. We omit details here. �

Example 7.1 (revisited). We can now use LeanCheck to get a
counter-example to prop_mapFilter for boolean element values:
> check (prop_mapFilter

:: (Bool->Bool) -> (Bool->Bool) -> [Bool] -> Bool)

*** failed for:

\x -> case x of False -> False; True -> False

\x -> case x of False -> True; True -> False

[True] �

Example 7.3. Note the application of mutate at di�erent func-
tional levels when enumerating functions of type Word->Word->Word:
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[ [ const (const 0) ]

, [ const (const 1) ]

, [ const (const 0) `mutate` [(0,const 1)]

, const (const 1) `mutate` [(1,const 0)]

, const (const 0 `mutate` [(0,1)])

, const (const 1 `mutate` [(0,0)])

, const (const 2) ]

, ... ] �

Example 7.4. Functions taking or returning algebraic datatypes
can also be enumerated. Consider the following incorrect prop-
erty over the Expr type that states that all binary operators on
expressions are commutative:

prop_alwaysCommute :: (Expr -> Expr -> Expr)

-> Expr -> Expr -> Expr

prop_alwaysCommute f e1 e2 = e1 `f` e2 == e2 `f` e1

Using check, we can see that prop_alwaysCommute is incorrect:

> check prop_alwaysCommute

*** Failure:

\x y -> case (x,y) of

(Val 0,Val 0) -> Val 1

(Val 0,Val 1) -> Val 1

(Val 1,Val 0) -> Val 0

(Val 0,Val (-1)) -> Val 1

...

(Val 0)

(Val 1) �

Bacause of the Eq restriction in the functional enumeration from
§7, the described technique is not able to enumerate higher-order
functions.

The class of enumerated functions is limited to only mutations
of a constant function. Take for example a simple function like
even :: Int -> Bool. LeanCheck is not able to enumerate it,
only approximations, like:

const False `mutate` [(0,True), (2,True), (4,True)]

So, we conjecture this technique won’t be able to �nd counter-
examples to some properties of higher-order functions.

Table 2 shows the numbers of functions in successive tiers for
several types. The number grows by a factor of less than three.

— � —
Although there is scope for further development Mark VI is the

last version we present here.

8 LeanCheck
The library described in this paper is a tutorial reconstruction of a
property-based testing library called LeanCheck. There are a few
di�erences, notably:

• support for existential properties (§8.1);
• support for automatic Listable instance derivation (§8.2);
• an improved functional enumeration (§8.3).

Towards the end of this section, we list a few limitations of LeanCheck
(§8.4).

Table 2. Numbers of functions in successive tiers for several types

Tier Number of mutants of type
::Int ::Bool ::Int ::Int ::[Int] ::Expr
->Bool ->Bool ->Int ->Int ->[Int] ->Expr

->Bool ->Int
0 2 2 1 1 1 0
1 2 8 1 1 1 1
2 2 32 3 5 4 1
3 4 24 5 13 10 2
4 4 – 10 35 29 3
5 6 – 16 81 75 8
6 8 – 30 201 206 17
7 10 – 48 460 539 41
8 12 – 80 1063 1428 91
9 16 – 129 2374 3721 213

8.1 Existential properties
It can be useful to ensure that a property is true on at least one set of
inputs. An example of this is isPrefixOf from Data.List. For this
use-case we can de�ne the function exists, which checks whether
there exists an assignment of values that satis�es a property up to
a number of test values:

exists :: Testable a => Int -> a -> Bool

exists n = or . take n . map snd . results

For example, we can declare and check the following property:

> check $ \xs ys -> xs `isPrefixOf` ys

== exists 100 (\xs' -> xs++xs' == ys)

+++ OK

This is a simplistic solution, as it depends on a delicate balance
between the number of tests performed by check and exists. Au-
tomatically adjusting the number of tests performed by exists
based on the tests of check is future work.

8.2 Automatic derivation of Listable instances
Except when values have to follow a data invariant (§6), Listable
instances follow a very simple pattern. Their production can be
automated using Template Haskell [17]. Using these techniques,
we could derive an instance of the Listable typeclass for our Expr
type from earlier, with the following top-level declaration:

deriveListable ''Expr

Because the de�nition of deriveListable is straightforward, al-
beit lengthy, we omit it here. It is provided as part of the LeanCheck
package (§10).

Although we chose Template Haskell, we believe the automatic
derivation could alternatively be implemented using GHC’s Gener-
ics [11] or Uniplate [12].

8.3 An improved function enumeration
The actual implementation of function enumeration provided on
the LeanCheck package is able to avoid the repeated mutants men-
tioned on Example 7.2 at the cost of more complex programming. A
di�erent process is used when when dealing with �nite argument
types.
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Legend: A thin grey arrow from A to B loosely indicates B uses
ideas of and/or is inspired by A. Thick black arrows indicate direct
improvements. Round, square and rounded nodes indicate random,
enumerative and mixed test data geration.

Figure 1. Flow of ideas between property-testing tools for Haskell

8.4 Limitations of LeanCheck
LeanCheck does not support randomised testing or test-case prun-
ing using laziness. Those issues are resolved by two more elaborate
tools, Feat and Neat. We discuss these tools and how they address
these issues in §9.

8.5 Availability
LeanCheck is freely available with a BSD3-style license from either:

• h�ps://hackage.haskell.org/package/leancheck
• h�ps://github.com/rudymatela/leancheck

Note however, LeanCheck is not as small as the version described
in this paper: LeanCheck has been “realworldi�ed” with several
features for practical use. The version on this paper has a little
less than 100 lines of code. LeanCheck still has a small core, with
200 LOC. But, accounting all modules, LeanCheck has 1500 LOC in
total!

9 Related Work
QuickCheck QuickCheck [3] established the central ideas of
classes of test-value types and a class of testable propeties. Un-
like our Listable class, QuickCheck’s Arbitrary class is used to

generate random (or arbitrary!) values. As QuickCheck is nondeter-
ministic, multiple executions are not guaranteed to �nd the same
failing cases.

Writing Arbitrary instances can be a bit harder than Listable
instances. The following is an arbitrary instance for Expr (§3):
instance Arbitrary Expr where

arbitrary = sized arb

where

arb 0 = liftM Val arbitrary

arb n = oneof [ arb 0

, liftM2 Add (arb (n `div` 2))

(arb (n `div` 2)) ]

shrink (Val n) = [Val n' | n' <- shrink n]

shrink (Add e1 e2) = [e1,e2]

++ [ Add e1' e2'

| (e1',e2') <- shrink (e1,e2) ]

The optional shrink function above is used by QuickCheck to �nd
local-minimal counterexamples. Given a value, shrink produces a
�nite list of values which are, in some sense, like the original but a
little smaller.

SmartCheck SmartCheck [14] is an extension to QuickCheck
that incorporates techniques to automatically shrink and generalise
counterexamples. For example:

> smartCheck scStdArgs $ \xs -> nub xs == (xs::[Int])

*** Extrapolated value, for all values xs: (2:2:xs)

SmallCheck SmallCheck [16] was the �rst enumerative property-
based testing tool for Haskell. Values are enumerated by depth in-
stead of size and for this reason, the number of values tends to grow
quickly as SmallCheck explores further (cf. Table 3). SmallCheck
de�nes the Serial typeclass, which has the same combinators as
the Listable typeclass in this paper:

instance Serial Expr where

series = cons1 Val

\/ cons2 Add

Lazy SmallCheck Lazy SmallCheck [15, 16] works similarly to
SmallCheck being enumerative and depth bounded. However, Lazy
SmallCheck exploits laziness, by using partially de�ned test values.
If a property returns a boolean result for a partially de�ned value,
Lazy SmallCheck does not enumerate versions of this value that
are more de�ned.
Example 5.2 (revisited). For the faulty merge function from §5,
Lazy SmallCheck reports the following counter example:

0 (-2:-1:0:_) []

The tail of the list does not even need to be de�ned for the property
to fail. �

Feat Feat [6] is another property-based testing tool that is able to
do exhaustive enumeration of values, random testing and even a
mixed strategy. To do that, Feat uses an e�cient indexing function
index :: Int -> a, that maps an integer to a value in the enumer-
ation. More speci�cally, Feat partitions the set of values by their
size to obtain a function select :: Int -> Int -> a, that maps
the size and index of values of that size into a value. The size of a

https://hackage.haskell.org/package/leancheck
https://github.com/rudymatela/leancheck


A simple incremental development of a property-based testing tool (Functional Pearl) Haskell’17, September 2017, Oxford, UK

Table 3. Numbers of integer lists in succesive tiers (for Feat and
LeanCheck) or depths (for SmallCheck)

SmallCheck’s depth 1, 2, 7, 36, 253, 2278, 25059, 325768, ...
Feat’s size 0, 1, 0, 0, 2, 2, 4, 12, 24, 52, 120, 264, ...
LeanCheck’s tiers 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ...

value is an arbitrary measure depending on the type and de�ned
in the Enumerable implementation but, like LeanCheck, usually
counts the number of constructors plus the size of sub-values.

Feat works for types that are instances of the Enumerable type
class: these have an enumerate function. Instances are de�ned in
a similar way to instances of the Listable typeclass, though with
somewhat higher level combinators.
instance Enumerable Expr where

enumerate = consts [ pure Val

, unary (funcurry Add) ]

As the size increases, the number of generated values grows
much more slowly than it does with increasing depth in Small-
Check. This gives a much more �ne grained control on the number
of generated test cases. On wider types, this o�ers a signi�cant
advantage. Table 3 shows the progression in the number of enu-
merated values using both methods for integer lists.

As the Feat authors note “for completeness, Feat should support
enumerating functional values. ... This is largely a question of �nding
a suitable de�nition of size for functions, or an e�cient bijection from
an algebraic type into the function type.” Perhaps something similar
to the enumeration of functions de�ned in §7 would also be suitable
in Feat.

Neat Neat [7] mixes the idea of size-bounded enumeration of Feat
with a clever algorithm for search space pruning.

GenCheck GenCheck, like LeanCheck and Feat, enumerates val-
ues by size. It separates generators from what it calls “test strate-
gies”. No paper has been published on it. Its source code and
tutorials are avaliable on Hackage and GitHub [8, 18].

Beyond property-based testing Properties can be more than just
test cases, they can also serve as concise documentation. QuickSpec
[5] is a tool which can discover properties of collections of functions
through generating and testing terms. Discovered properties can be
included in a testsuite and used as documentation, and the inclusion
of an unexpected property (or lack of an expected one) can often
lead to additional insights into the original code.

Summary Figure 1 summarizes how property-based testing tools
for Haskell are related regarding how ideas were propagated be-
tween tools. Table 4 shows whether di�erent features are present
in each tool.

10 Conclusion
In this paper we detailed how to write a property-based testing tool
by implementing the three necessary basic components:

• a typeclass for test values with a generator (§2);
• a combinator library for de�ning generators (§3);
• a typeclass for testable properties (§4).

In addition, we covered aspects of de�ning fair generators (§5), con-
ditional properties (§6) and enumeration of functions (§7). As the
main example, we used an enumerative library, but all three basic
components exist in libraries that generate test values randomly.

In §8, we listed the di�erences to the reconstruction on this paper
with the actual tool it is based on: LeanCheck.

Towards the end of the paper (§9), we summarized a few of
property-based testing libraries for Haskell.
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Table 4. Summary of di�erences between property-based testing tools for Haskell.
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Test data generation
random   # # #  #   #
enumerative # #        #
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size-bounded # # # #     # #

mixed random & enumerative # # # # #  #   #
demand-driven / directed # # #  # #  #   
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